LATEX

AdS2 black holes and dilaton gravity

It is well known that in two dimensions all negatively curved spacetimes are locally  ${\bf AdS}^2$ and thus stable black hole solutions in two dimensions do not exist in a naive way.  This is similarly to the fact that in three dimensions all negavtively curved spacetimes are locally an ${\bf AdS}^3$ and thus stable black hole solutions in three dimensions do not  also exist in a naive way. Yet, in three dimensions the celebrated  BTZ black hole \cite{Banados:1992wn} is a stable black hole solution which differs from ${\bf AdS}^3$ by global identification and in two dimensions the SS black hole \cite{Spradlin:1999bn} is also a stable black solution which differs from ${\bf AdS}^2$ by global identification (we choose the Killing time $t$ at infinity such that the region $-\infty\lt t\lt +\infty$ does not cover all of the boundary of ${\bf AdS}^2$). These black holes are therefore locally identical with the corresponding anti-de Sitter spacetimes and differ from them only topologically.

As we will see in the following dilaton gravity in two dimensions provides another way of obtaining stable ${\bf AdS}^2$ black holes which are locally identicall to ${\bf AdS}^2$ spacetime but differ from it only globally precisely through the value of the dilaton field.


${\bf AdS}^2\times {\bf S}^2$ as a near-horizon geometry of extremal black holes 

The single most important fact (in our opinion) about ${\bf AdS}^2$ geometry  is its appearance as a near-horizon geometry  of extremal black holes in both general relativity and string theory.  The typical example is Einstein gravity coupled to Maxwell electromagnetism and its celebrated four-dimensional Reissner-Nordstrom black hole given by the metric \cite{RN}
\begin{eqnarray}
ds^2=-f(r)dt^2+\frac{dr^2}{f(r)}+r^2d\Omega_2^2~,~f(r)=1-\frac{2M}{r}+\frac{Q^2}{r^2}.
\end{eqnarray}
This black hole is characterized by a mass $M$ and a charge $Q$ where $M\geq Q$ (otherwise if $M\lt Q$ a naked singularity appears which is forbidden by cosmic censorship \cite{Penrose:1969pc}).  In the Reissner-Nordstrom black hole solution the electric field (which we are not writing explicitly) plays a fundamental role by supporting the whole geometry.

The near-horizon geometry of this solution is approximately  a Rindler spacetime (recall the Schwarzschild solution) which does not solve Einstein equations. However, for extremal black holes (those with mass $M=Q$ or equivalently zero temperature $T=0$) the nera-horizon geometry is anti-de Sitter spacetime ${\bf AdS}^2$ (times a sphere ${\bf S}^2$ because of rotational invariance) which is actually an exact solution of Einstein equations. Thus, a quantum black hole with mass $M\gt Q$ will evaporate until it reaches the extremal mass $M=Q$ where the temperature vanishes and the evaporation stops , i.e. the extremal quantum black hole acts as a stable ground state in the case of a charged black hole \cite{Hawking:1974sw}.

In the extremal limit $M=Q$ (or $T=0$) the inner and outer horizons  $r_-$ and $r_+$ respectively coincide $r_+=r_-=Q$ and the horizon becomes a double zero since $f(r)=(1-Q/r)^2$. We define
\begin{eqnarray}
r=Q(1+\frac{\lambda}{z})~,~t=\frac{QT}{\lambda}.
\end{eqnarray}
The near-horizon geometry of the extremal solution is obtained by letting $\lambda\longrightarrow 0$. By substituting these definitions in the metric and taking the limit $\lambda\longrightarrow 0$ we obtain
\begin{eqnarray}
ds^2=\frac{Q^2}{z^2}(-dT^2+dz^2)+Q^2d\Omega_2^2.
\end{eqnarray}
This is the metric of ${\bf AdS}^2\times{\bf S}^2$ where the charge $Q$ appears as the radius of both factors ${\bf AdS}^2$ and ${\bf S}^2$ \cite{carter}.


${\bf AdS}^2$ black holes in dilaton gravity

We start with dilaton gravity theory in four dimensions given by the action \cite{Cadoni:1994uf,Cadoni:1993rn}
\begin{eqnarray}
S=\int d^4x \sqrt{-{\rm det}g^{(4)}} e^{-2\phi}(R^{(4)}-F_{\mu\nu}F^{\mu\nu}).
\end{eqnarray}
The closely related low-energy effective actions  of string theory with similar black holes physics are found in \cite{Garfinkle:1990qj,Giddings:1992kn}).

A spherically symmetric non-singular black hole solution of the equations of motion stemming from this action is given by the monopole hedgehog configuration, the black hole spacetime metric and the dilaton field \cite{Cadoni:1994uf}
\begin{eqnarray}
F_{ij}=\frac{Q_M}{r^2}\epsilon_{ijk}n_k.
\end{eqnarray}
\begin{eqnarray}
ds^2=-(1-\frac{r_+}{r})dt^2+\frac{dr^2}{(1-\frac{r_+}{r})(1-\frac{r_-}{r})}+r^2d\Omega_2^2.\label{4dBH}
\end{eqnarray}
\begin{eqnarray}
e^{2(\phi-\phi_0)}=\frac{1}{\sqrt{1-\frac{r_-}{r}}}.
\end{eqnarray}
The inner radius $r_-$ and the outer radius $r_+$ (with $r_+\geq r_-$) are given in terms of the mass $M$ and the charge $Q_M$ of the black hole by the relations \cite{Cadoni:1994uf}
\begin{eqnarray}
2M=r_+~,~ Q_M^2=\frac{3}{4}r_+r_-.
\end{eqnarray}
The temperature and the entropy of the black hole are given on the other hand by the relations \cite{Cadoni:1994uf}
\begin{eqnarray}
T=\frac{1}{4\pi r_+}\sqrt{1-\frac{r_-}{r_+}}~,~S=\pi r_+^2
\end{eqnarray}
The extremal limit $T\longrightarrow 0$ of this black hole configuration is then given by $r_+=r_-=Q=2Q_M/\sqrt{3}$ or equivalently $M=Q_M/\sqrt{3}$.

The spatial sections of this black hole solution coincide  with those of the Reissner-Nordstrom black hole. However, this solution corresponds to a non-singular black hole where the spacetime manifold is cut at $r=r_-$ while it is asymptotically flat. Indeed, the maximal extension of this metric yields a Penrose diagram identical to that of the Schwarzschild solution except that the singularity $r=0$ is replaced by the boundary of the manifold at $r=r_-$ \cite{Cadoni:1994uf}.

For the extremal solution $r_+=r_-=Q$ we introduce the coordinates
\begin{eqnarray}
r=Q(1+\frac{4\lambda^2}{z^2})~,~t=\frac{QT}{\lambda}.
\end{eqnarray}
The metric and the dilaton in the near-horizon limit $\lambda\longrightarrow 0$ take then the form
\begin{eqnarray}
ds^2=\frac{4Q^2}{z^2}(-dT^2+dz^2)+Q^2d\Omega_2^2.
\end{eqnarray}
\begin{eqnarray}
e^{2(\phi-\phi_0)}=\frac{z}{2\lambda}.
\end{eqnarray}
This shows explicitly that the near-horizon geometry of the extremal black hole is indeed ${\bf AdS}^2\times{\bf S}^2$.

We can perform a spherical reduction of this solution by decomposing the metric as follows
\begin{eqnarray}
ds^2&=&g_{\mu\nu}^{(4)}dx^{\mu}dx^{\nu}\nonumber\\
&=&g_{ab}^{(2)}dx^adx^b+\Phi^2(x^a)\gamma_{ij}dn^idn^j.
\end{eqnarray}
The scalar field $\Phi$ is a dilaton field due to the spherical reduction. We compute then (see \cite{Grumiller:2001ea} and references therein)
\begin{eqnarray}
&&\sqrt{-{\rm det}g^{(4)}}=\Phi^2 \sqrt{-{\rm det}g^{(2)}}\sqrt{{\rm det}\gamma }\nonumber\\
&&R^{(4)}=R^{(2)}-\frac{2}{\Phi^2}(-1+\partial_a\Phi\partial^a\Phi)-\frac{4}{\Phi}\Delta\Phi.
\end{eqnarray}
And hence

\begin{eqnarray}
\int d^4x \sqrt{-{\rm det}g^{(4)}} R^{(4)}&=&4\pi \int d^2x \sqrt{-{\rm det}g^{(2)}} (\Phi^2 R^{(2)}+2\partial_a \Phi\partial^a\Phi+2).
 \end{eqnarray}
Hence the action reduces to


\begin{eqnarray}

S&=&4\pi \int d^2x \sqrt{-{\rm det}g^{(2)}} e^{-2\phi}(\Phi^2 R^{(2)}+2\partial_a \Phi\partial^a\Phi+2-\Phi^2 F^2).
\end{eqnarray}
For Schwarzschild-like coordinates the dilaton field $\Phi$ is given by $\Phi=r$. However, in the current case the spherical reduction is performed on a sphere of constant radius $r= Q=2Q_M/\sqrt{3}$, i.e. $\Phi=Q$. We get then the action (with $\Lambda=1/2Q$)
\begin{eqnarray}
S&=&4\pi Q^2 \int d^2x \sqrt{-{\rm det}g^{(2)}} e^{-2\phi}(R^{(2)}+2\Lambda^2).
\end{eqnarray}
This is called the Jackiw-Teitelboim action \cite{JT} which is one of the most important dilatonic gravity models in two dimensions. The most general solution (see \cite{Cadoni:1993rn} and references therein) of the equations of motion stemming from the Jackiw-Teitelboim action  is given by  the metric field (in the so-called Schwarzschild coordinates)
\begin{eqnarray}
ds^2=-(\Lambda^2r^2-a^2)dt^2+\frac{dr^2}{\Lambda^2r^2-a^2}.
\end{eqnarray}
And the dilaton field (with $\Phi=\exp(-2\phi)$)
\begin{eqnarray}
e^{2(\phi-\phi_0)}=\frac{1}{\Lambda r}\iff \Phi=e^{-2\phi}=\Phi_0\Lambda r.
\end{eqnarray}
The parameter $a^2$ in the metric is an integration constant related to the mass $M$ of the solution by the relation
\begin{eqnarray}
M=\frac{\Lambda}{2}a^2\Phi_0.
 \end{eqnarray}
The above metric corresponds, for all values of $a^2$, to a two-dimensional spacetime with a constant negative curvature $R=-2\Lambda^2$, i.e. an anti-de Sitter spacetime ${\bf AdS}^2$. Furthermore, it was shown in \cite{Cadoni:1994uf} that this metric in Schwarzschild coordinates describes the two-dimensional sections of the extremal four-dimensional black hole (\ref{4dBH}).

The solution for $a^2=0$ is exactly ${\bf AdS}^2$ spacetime and it plays the role of the ground state of the theory (analogous to Minkowski spacetime). For example, this solution has mass $M=0$ and the mass of the other solutions is computed with respect to this one.


The solution $a^2>0$ is our ${\bf AdS}^2$ black hole with a horizon at $r_H=a/\Lambda$ which  can not be distinguished locally from the actual ${\bf AdS}^2$ spacetime with $a^2=0$ (as we will see this is the analogue of Rindler spacetime). Indeed, by means of an appropriate coordinates transformation we can bring the solution $a^2>0$ into the form of the solution $a^2=0$. The difference between the two cases is strictly topological in character originating from the global properties of the solution encoded in the behavior of the dilaton field. To see this crucial point more explicitly we consider the coordinates transformation
\begin{eqnarray}
r^{\prime}=a\Lambda t r~,~2a\Lambda t^{\prime}=\ln\big(\Lambda^2t^2-\frac{1}{\Lambda^2 r^2}\big).
\end{eqnarray}
We can then check immediately that
\begin{eqnarray}
-(\Lambda^2r^{\prime 2}-a^2)dt^{\prime 2}+\frac{dr^{\prime 2}}{\Lambda^2r^{\prime 2}-a^2}=-\Lambda^2r^2 dt^2+\frac{dr^2}{\Lambda^2r^2}.
\end{eqnarray}
However, the dilaton field changes in a non-trivial way under the above coordinates transformation, viz
\begin{eqnarray}
\Phi_0\sqrt{\frac{\Lambda^2 r^{\prime 2}}{a^2}-1}e^{-a\Lambda t^{\prime}}=\Phi_0\Lambda r.
\end{eqnarray}
Thus, although the solution with $a^2=0$ (${\bf AdS}^2$ spacetime) is locally equivalent to the solution with $a^2 \gt 0$ (${\bf AdS}^2$ black hole) these two solutions are globally different due to the behavior of the dilaton field which effectively sets the boundary conditions on the spacetime.


Furthermore, the solution with $a^2\gt 0$ can be seen to represent really an ${\bf AdS}^2$ black hole from the fact that it must be cutoff at $r=0$ otherwise the dilaton field $\Phi=\exp(-2\phi)$ will become negative when we maximally extend the corresponding metric beyond $r=0$ which in turn will translate in four dimensions (recall that the two-dimensional theory is obtained by spherical reduction from four dimensions) into a negative value for the area of the transverse sphere which is physically unacceptable. Therefore $r=0$ is a boundary for the   ${\bf AdS}^2$ black hole with $a^2>0$ corresponding to the boundary $r=r_-$ of the extremal four-dimensional regular black hole (\ref{4dBH}).

The temperature and the entropy of this ${\bf AdS}^2$ black hole can be computed in the usual way and one finds \cite{Cadoni:1994uf}
\begin{eqnarray}
T=\frac{a\Lambda}{2\pi}~,~S=4\pi \sqrt{\frac{\Phi_0M}{2\Lambda}}.
\end{eqnarray}
The solution with the value $a^2\lt 0$ corresponds to a negative mass and although this makes sense in two dimensions (it corresponds to no naked singularities) it will translate in four dimensions into a naked singularity which is unacceptable by cosmic censorship. Hence the solution with $a^2\lt 0$ is unphysical (from the four-dimensional point of view) and should be discarded.

In summary, our ${\bf AdS}^2$ black hole (the solution with $a^2\gt 0$) is characterized by a horizon at $r_H=a/\Lambda$ and a boundary at $r=0$. For the semi-classical process of Hawking radiation the boundary at $r=0$ is not required and therefore one can work in a system of coordinates where the boundary is not accessible. We introduce then the light-cone coordinates
\begin{eqnarray}
\sigma^{\pm}=t\pm r_*
\end{eqnarray}
where $r_*$ is the tortoise coordinate defined as usual by the requirement
\begin{eqnarray}
(\Lambda^2 r^2-a^2)dr_*^2=\frac{dr^2}{\Lambda^2 r^2-a^2}\iff r_*=-\frac{1}{a\Lambda}{\rm arctanh}(\frac{a}{\Lambda r}).
\end{eqnarray}
Equivalently, we can work in the light-like coordinates $x^{\pm}$ defined by
\begin{eqnarray}
x^{\pm}=\frac{2}{a\Lambda}\tanh \frac{a\Lambda}{2}\sigma^{\pm}.\label{coc}
\end{eqnarray}
The metric and the dilaton fields in the light-like coordinates take the form (conformal gauge)
\begin{eqnarray}
ds^2&=&-\frac{a^2}{\sinh^2\frac{a\Lambda}{2}(\sigma^--\sigma^+)}d\sigma^-d\sigma^+\nonumber\\
&=&-\frac{4}{\Lambda^2}\frac{1}{(x^--x^+)^2}dx^-dx^+.\label{meme}
\end{eqnarray}
\begin{eqnarray}
e^{2(\phi-\phi_0)}&=&\frac{1}{a}\tanh\frac{a\Lambda}{2}(\sigma^--\sigma^+)\nonumber\\
&=&\frac{\Lambda}{2}\frac{x^--x^+}{1-\frac{a^2\Lambda^2}{4}x^-x^+}.
\end{eqnarray}
The ${\bf AdS}^2$ spacetime (in the conformal gauge) corresponds to setting $a^2=0$ (or equivalently $x^{\pm}=\sigma^{\pm}$) in these expressions. In other words, the coordinates $x^{\pm}$ can be thought of as describing ${\bf AdS}^2$ spacetime even for $a^2\ne 0$ since they can be easily extended to the whole of spacetime. We also observe that the boundary of ${\bf AdS}^2$ spacetime is located at $x^-=x^+$ and that we must have $x^-\geq x^+$ (corresponding to $r\geq 0$ in the Schwarzschild coordinates) in order for the dilaton field $\exp(2(\phi-\phi_0))$ to remain positive. Furthermore, it is clear that the coordinates $\sigma^{\pm}$ for $a^2\gt 0$ cover only the region $-2/a\Lambda\lt x^{\pm}\lt +2/a\Lambda$ of the  ${\bf AdS}^2$ spacetime (corresponding to the solution $a^2=0$ in the conformal gauge). This region corresponds to the region $r\gt r_H$ in the Schwarzschild coordinates whereas the boundary at $r=0$ in the Schwarzschild coordinates corresponds now to the line $1-\frac{a^2\Lambda^2}{4}x^-x^+=0$.

Another  interesting system of coordinates consists of  the Poincare coordinates $\hat{t}$ and $z$ defined for our ${\bf AdS}^2$ black hole by the change of coordinates
\begin{eqnarray}
&&\hat{t}=\frac{1}{a\Lambda}e^{a\Lambda t}\cosh a\Lambda r_*\longrightarrow t+\frac{1}{a\Lambda}~,~a\longrightarrow 0\nonumber\\
&&z=-\frac{1}{a\Lambda}e^{a\Lambda t}\sinh a\Lambda r_*\longrightarrow -r_*~,~a\longrightarrow 0
\end{eqnarray}
The metric in the Poincare patch is given by the usual form
\begin{eqnarray}
ds^2=\frac{1}{\Lambda^2 z^2}(-d\hat{t}^2+dz^2).
 \end{eqnarray}
For $a=0$ (the ${\bf AdS}^2$ spacetime) the boundary is located at $z=0$  or equivalently $x^--x^+=0$ and the Poincare patch covers $z\gt 0$ or equivalently $x^--x^+\gt 0$. This result shows also that our ${\bf AdS}^2$ black hole is indeed locally equivalent to a pure ${\bf AdS}^2$ spacetime. In fact the difference between them is fully encoded in the value of the dilaton field which reflects the boundary conditions imposed on the spacetime and its consequent  topological features.


Hawking process


The relationship between the ${\bf AdS}^2$ spacetime corresponding to the solution $a^2=0$ (denoted from now on by ${\bf ADS}_0$) and the ${\bf AdS}^2$ black hole corresponding to the solution $a^2\gt 0$ (denoted from now on by ${\bf ADS}_+$) is identical to the relationship between the the two-dimensional Minkowski spacetime with metric
\begin{eqnarray}
ds^2=-dt^2+dx^2
\end{eqnarray}
and the  Rindler wedge with metric (with $-\infty<\tau,\sigma<+\infty$)
\begin{eqnarray}
ds^2=\exp(2\alpha \sigma)(-d\tau^2+d\sigma^2)
\end{eqnarray}
confined to the quadrant $x\gt |t|$. The change of coordinates $(t,x)\longrightarrow (\tau,\sigma)$ is given by

\begin{eqnarray}
t=\frac{1}{\alpha}\exp(\alpha\sigma)\sinh \alpha\tau~,~x=\frac{1}{\alpha}\exp(\alpha\sigma)\cosh \alpha\tau~, ~x>|t|.\label{cha}
\end{eqnarray}
Indeed, the parameter $a^2$ (which is proportional to the mass of the black hole) in our case  is the analogue of the acceleration $\alpha$ with which the Rindler observer is uniformly accelerating in Minkowski spacetime creating thus a horizon at $x=|t|$ separating the Rindler wedge from the rest of Minkowski spacetime.

Similarly here, a non-zero value of the parameter $a^2$ is associated with the existence of a horizon at $r=r_H=a/\Lambda$ separating the exterior of the black hole ${\bf ADS}_+$ (described by the light-like coordinates $\sigma^{\pm}$ which indeed covers only the region $r\gt r_H$) from its interior $0\lt r\lt r_H$.

The asymptotic behavior of this ${\bf AdS}^2$ black hole ${\bf ADS}_+$ is given by the ${\bf AdS}^2$ spacetime ${\bf ADS}_0$ which can be fully covered by the light-like coordinates $x^{\pm}$. The change of coordinates (\ref{coc}) which relates the two sets of coordinates $x^{\pm}$ and $\sigma^{\pm}$  (although in our case it does not correspond to any motion of physical observers and therefore is connecting two different manifolds) play exactly the role of the boost which connects the Minkwoski coordinates $(t,x)$ to the Rindler coordinates $(\eta,\sigma)$.

Therefore, quantization of fields and semi-classical considerations of Hawking radiation in the ${\bf ADS}_+$ background with ${\bf ADS}_0$ taken as a ground state should then proceed along the same steps as the analogous calculation performed in the Rindler wedge with the Minkowski spacetime taken as a ground state. As we will explain, there will be two vacuum states $|0_+\rangle$ and $|0_0\rangle$  corresponding to the two different spacetimes (observers) ${\bf ADS}_+$ and  ${\bf ADS}_0$ and as a consequence a thermal radiation will be observed in each vacuum state by the other observer associated with the other spacetime which is precisely Hawking radiation.

However, we should also recall that anti-de Sitter spacetime is not a globally hyperbolic space and thus one should be careful with the boundary conditions at infinity (transparent boundary conditions) as discussed for example in \cite{Cadoni:1993rn}.

We will use in the following a slightly different parameterization of ${\bf ADS}_+$ and ${\bf ADS}_0$ made possible by the $SL(2,R)$ symmetry of the metric (\ref{meme}) given by the transformations
\begin{eqnarray}
x^{\pm}\longrightarrow \frac{ax^{\pm}+b}{cx^{\pm}+d}~,~ad-bc=1.
\end{eqnarray}
From the first line of (\ref{meme}) the metric on the ${\bf AdS}^2$ black hole ${\bf ADS}_+$ is given by (with the change of notation $t\longrightarrow \tau$ and $r_*\longrightarrow \sigma$)
\begin{eqnarray}
ds^2=\frac{a^2}{\sinh^2 a\Lambda\sigma}(-d\tau^2+d\sigma^2).
\end{eqnarray}
The black hole coordinates $\tau$ and $\sigma$ are defined in the range $-\infty\lt \tau\lt +\infty$ and $0\lt\sigma\lt \infty$ with corresponding light-cone coordinates defined by $\sigma^{\pm}=\tau\mp\sigma$.

The metric on the ${\bf AdS}^2$ spacetime ${\bf ADS}_0$ is assumed to be of the Poincare form, viz
\begin{eqnarray}
ds^2=\frac{1}{\Lambda^2 x^2}(-dt^2+dx^2).
\end{eqnarray}
The AdS coordinates $t$ and $x$ are defined in the range $-\infty\lt t\lt +\infty$ and $0\lt x\lt \infty$ with corresponding light-cone coordinates defined by $x^{\pm}=t\mp x$.

The change of coordinates $(t,x)\longrightarrow (\tau,\sigma)$ is given explicitly by
\begin{eqnarray}
t=\frac{1}{a\Lambda}e^{a\Lambda \tau}\cosh a\Lambda\sigma~,~x=\frac{1}{a\Lambda}e^{a\Lambda \tau}\sinh a\Lambda\sigma.
\end{eqnarray}
By comparing with (\ref{cha}) we can see that $a\Lambda$ in our anti-de Sitter black hole plays the role of the acceleration $\alpha$ in Rindler spacetime (the mathematics is identical although the underlying physics is quite different).

We also compute
\begin{eqnarray}
x^{\pm}=\frac{1}{a\Lambda}e^{a\Lambda\sigma^{\pm}}.
\end{eqnarray}
These coordinates define region or quadrant I of ${\bf ADS}_0$ (the exterior of our black hole) in which the timelike Killing vector field (which generates boosts in the $x-$direction) is $\partial_{\tau}$. This Killing vector field is future-directed.  Thus, the Killing horizons lie at $x=\pm t$.

The region or quadrant IV of ${\bf ADS}_0$ in which the timelike Killing vector field (given here by $\partial_{-\tau}=-\partial_{\tau}$) is past-directed is given by the coordinates
\begin{eqnarray}
x^{\pm}=-\frac{1}{a\Lambda}e^{a\Lambda\sigma^{\pm}}.
\end{eqnarray}
The change of coordinates $(t,x)\longrightarrow (\tau,\sigma)$ in this region is given by
\begin{eqnarray}
t=-\frac{1}{a\Lambda}e^{a\Lambda \tau}\cosh a\Lambda\sigma~,~x=-\frac{1}{a\Lambda}e^{a\Lambda \tau}\sinh a\Lambda\sigma.
\end{eqnarray}
Hence ${\bf ADS}^+$ covers the region of ${\bf ADS}_0$ given by the union of the two quadrants I and IV which is specified by the condition $x^+x^-\geq 0$ with the black horizon defined by the condition $x^+x^-=0$.

The equation of motion is the Klein-Gordon equation in the ${\bf AdS}^2$ black hole background ${\bf ADS}_+$ which is locally equivalent to the ${\bf ADS}^2$ spacetime ${\bf ADS}_0$, i.e. the equation of motion is effectively the Klein-Gordon equation in anti-de Sitter spacetime ${\bf AdS}^2$. Furthermore, the inner product  between two solutions $\phi_1$ and $\phi_2$ of the equation of motion is defined in the usual way by ($\Sigma$ is the spacelike surface $\tau=0$ and $n^{\mu}$ is the timelike unit vector normal to it)
\begin{eqnarray}
(\phi_1,\phi_2)&=&-i\int_{\Sigma} \big(\phi_1\partial_{\mu}\phi_2^*-\partial_{\mu}\phi_1.\phi_2^*\big) d\Sigma n^{\mu}\nonumber\\
&=&-i\int \big(\phi_1\partial_{\tau}\phi_2^*-\partial_{\tau}\phi_1.\phi_2^*\big) d\sigma.
\end{eqnarray}

A positive-frequency normalized plane wave solution of this equation of motion in region I ($x\gt 0$) is given by (with $\omega=|k|$)
 \begin{eqnarray}
&&g_k^{(1)}=\frac{1}{\sqrt{4\pi \omega}}\exp(-i\omega \tau+ik\sigma)~,~{\rm I}\nonumber\\
&&g_k^{(1)}=0~,~{\rm IV}.\label{pos}
\end{eqnarray}
This is positive-frequency since $\partial_{\tau}g_k^{(1)}=-i\omega g_k^{(1)}$.

A positive-frequency normalized plane wave solution in region IV is instead given by
 \begin{eqnarray}
&&g_k^{(2)}=0~,~{\rm I}\nonumber\\
&&g_k^{(2)}=\frac{1}{\sqrt{4\pi \omega}}\exp(i\omega \tau+ik\sigma)~,~{\rm IV}.
\end{eqnarray}
Since $\partial_{-\tau}g_k^{(2)}=-i\omega g_k^{(2)}$.

A general solution of the Klein-Gordon equation takes then the form
 \begin{eqnarray}
\phi=\int_k \big(\hat{b}_k^{(1)}g_k^{(1)}+\hat{b}_k^{(2)}g_k^{(2)}+{\rm h.c}\big).
\end{eqnarray}
This should be contrasted with the expansion of the same solution in terms of the anti-de Sitter spacetime modes $f_k\propto \exp(-i(\omega t-kx))$ with $\omega=|k|$ which we will write as
\begin{eqnarray}
\phi=\int_k \big(\hat{a}_k^{}f_k^{}+{\rm h.c}\big).
\end{eqnarray}
The ${\bf ADS}_0$ vacuum $|0_0\rangle$ and the ${\bf ADS}_+$ vacuum $|0_+\rangle$ are defined obviously by
\begin{eqnarray}
\hat{a}_k|0_0\rangle=0.
\end{eqnarray}
\begin{eqnarray}
\hat{b}_k^{(1)}|0_+\rangle=\hat{b}_k^{(2)}|0_+\rangle=0.
\end{eqnarray}
In order to compute the corresponding Bogolubov coefficients we extend the positive-frequency modes $g_k^{(1)}$ and $g_k^{(2)}$ to the entire spacetime ${\bf ADS}_0$ thus replacing the corresponding annihilation operators $\hat{b}_k^{(1)}$ and $\hat{b}_k^{(2)}$ by new annihilation operators $\hat{c}_k^{(1)}$ and $\hat{c}_k^{(2)}$ which annihilate the anti-de Sitter  spacetime vacuum $|0_0>$ \cite{Unruh:1976db}.

Clearly, for $k>0$ we have in region I the behavior
\begin{eqnarray}
\sqrt{4\pi\omega}g_k^{(1)}&=&\exp(-i\omega\sigma^+)\nonumber\\
&=&(a\Lambda)^{-i\frac{\omega}{a\Lambda}}(x^+)^{-i\frac{\omega}{a\Lambda}}.
\end{eqnarray}
In region IV ($x<0$) we should instead consider
\begin{eqnarray}
\sqrt{4\pi\omega}g_{-k}^{(2)*}&=&\exp(-i\omega \sigma^+)\nonumber\\
&=&(-a\Lambda)^{-i\frac{\omega}{a\Lambda}}(x^+)^{-i\frac{\omega}{a\Lambda}}\nonumber\\
&=&e^{\frac{\pi\omega}{a\Lambda}}(a\Lambda)^{-i\frac{\omega}{a\Lambda}}e^{\frac{\pi \omega}{a\Lambda}}(x^+)^{-i\frac{\omega}{a\Lambda}}.
\end{eqnarray}
Thus for all $x$, i.e. along the surface $t=0$, we should consider for $k>0$ the combination
\begin{eqnarray}
\sqrt{4\pi\omega}\big(g_k^{(1)}+e^{-\frac{\pi\omega}{a\Lambda}}g_{-k}^{(2)*}\big)
&=&(a\Lambda)^{-i\frac{\omega}{a\Lambda}}(x^+)^{-i\frac{\omega}{a\Lambda}}.
\end{eqnarray}
A normalized analytic extension to the entire spacetime of the positive-frequency modes $g_k^{(1)}$ is given by the modes
\begin{eqnarray}
h_k^{(1)}&=&\frac{1}{\sqrt{2\sinh \frac{\pi\omega}{a\Lambda}}}\big(e^{\frac{\pi\omega}{2a\Lambda}} g_k^{(1)}+e^{-\frac{\pi\omega}{2a\Lambda}}g_{-k}^{(2)*}\big).\label{h1}
\end{eqnarray}
Similarly, a normalized analytic extension to the entire spacetime of the positive-frequency modes $g_k^{(2)}$ is given by the modes
\begin{eqnarray}
h_k^{(2)}&=&\frac{1}{\sqrt{2\sinh \frac{\pi\omega}{a\Lambda}}}\big(e^{\frac{\pi\omega}{2a\Lambda}} g_k^{(2)}+e^{-\frac{\pi\omega}{2a\Lambda}}g_{-k}^{(1)*}\big).\label{h2}
\end{eqnarray}
The field operator can then be expanded in these modes as
\begin{eqnarray}
\phi=\int_k \big(\hat{c}_k^{(1)}h_k^{(1)}+\hat{c}_k^{(2)}h_k^{(2)}+{\rm h.c}\big).
\end{eqnarray}
Obviously, the modes $h_k^{(1)}$ and $h_k^{(2)}$ share with $f_k$ the same anti-de Sitter spacetime vacuum $|0_0\rangle $, viz
\begin{eqnarray}
\hat{c}_k^{(1)}|0_0\rangle=\hat{c}_k^{(2)}|0_0\rangle =0.
\end{eqnarray}
The ${\bf ADS}_+$ number operator in region I is defined by
\begin{eqnarray}
\hat{N}_R^{(1)}(k)=\hat{b}_k^{(1)+}\hat{b}_k^{(1)}.
\end{eqnarray}
We can now immediately compute the expectation value of this number operator in region I in the anti-de Sitter vacuum $|0_0\rangle$ to find
\begin{eqnarray}
\langle 0_0|\hat{N}_R^{(1)}(k)|0_0\rangle&=&\langle 0_0|\hat{b}_k^{(1)+}\hat{b}_k^{(1)}|0_0\rangle\nonumber\\
&=&\frac{e^{-\frac{\pi\omega}{a\Lambda}}}{2\sinh\frac{\pi\omega}{2}}\langle 0_0|\hat{c}_{-k}^{(2)}\hat{c}_{-k}^{(2)+}|0_0\rangle\nonumber\\
&=&\frac{1}{e^{\frac{2\pi\omega}{a\Lambda}}-1}\delta(0).
\end{eqnarray}
This is a blackbody Planck spectrum corresponding to the temperature
\begin{eqnarray}
T=\frac{a\Lambda}{2\pi}.
\end{eqnarray}


References

  



%\cite{Cadoni:1994uf}
\bibitem{Cadoni:1994uf}
M.~Cadoni and S.~Mignemi,
``Nonsingular four-dimensional black holes and the Jackiw-Teitelboim theory,''
Phys.\ Rev.\ D {\bf 51}, 4319 (1995)
doi:10.1103/PhysRevD.51.4319
[hep-th/9410041].
%%CITATION = doi:10.1103/PhysRevD.51.4319;%%
%73 citations counted in INSPIRE as of 29 Nov 2019


%\cite{carter}
\bibitem{carter}
B.~Carter,
``Black holes,''
edited by C.de Witt and B.S.de Witt, (Gordon and Breach, New York, 1973).





















%\cite{Penrose:1969pc}
\bibitem{Penrose:1969pc}
R.~Penrose,
``Gravitational collapse: The role of general relativity,''
Riv.\ Nuovo Cim.\ {\bf 1}, 252 (1969)
[Gen.\ Rel.\ Grav.\ {\bf 34}, 1141 (2002)].
doi:10.1023/A:1016578408204
%%CITATION = doi:10.1023/A:1016578408204;%%
%1021 citations counted in INSPIRE as of 29 Nov 2019

%\cite{RN}
 \bibitem{RN}
H.~Reissner,
``Uber die Eigengravitation des Elektrischen Feldes nach der Einsteinschen Theorie,''
Annalen Phys.,50,106-120 (1916).
G.~Nordstrom,
``On the Energy of the Gravitational Field in Einstein's Theory,''
Proc.Kon.Ned Akad.Wet.,20,1238-1245 (1918).



%\cite{Hawking:1974sw}
\bibitem{Hawking:1974sw}
S.~W.~Hawking,
``Particle Creation by Black Holes,''
Commun.\ Math.\ Phys.\ {\bf 43}, 199 (1975)
Erratum: [Commun.\ Math.\ Phys.\ {\bf 46}, 206 (1976)].
doi:10.1007/BF02345020, 10.1007/BF01608497
%%CITATION = doi:10.1007/BF02345020, 10.1007/BF01608497;%%
 %7939 citations counted in INSPIRE as of 29 Nov 2019


%\cite{Unruh:1976db}
\bibitem{Unruh:1976db}
  W.~G.~Unruh,
  ``Notes on black hole evaporation,''
  Phys.\ Rev.\ D {\bf 14}, 870 (1976).
  doi:10.1103/PhysRevD.14.870
  %%CITATION = doi:10.1103/PhysRevD.14.870;%%
  %2308 citations counted in INSPIRE as of 02 Nov 2016




%\cite{Banados:1992wn}
\bibitem{Banados:1992wn}
M.~Banados, C.~Teitelboim and J.~Zanelli,
``The Black hole in three-dimensional space-time,''
Phys.\ Rev.\ Lett.\ {\bf 69}, 1849 (1992)
doi:10.1103/PhysRevLett.69.1849
[hep-th/9204099].
%%CITATION = doi:10.1103/PhysRevLett.69.1849;%%
%2587 citations counted in INSPIRE as of 11 Dec 2019
 
%\cite{Spradlin:1999bn}
\bibitem{Spradlin:1999bn}
M.~Spradlin and A.~Strominger,
``Vacuum states for AdS(2) black holes,''
JHEP {\bf 9911}, 021 (1999)
doi:10.1088/1126-6708/1999/11/021
[hep-th/9904143].
%%CITATION = doi:10.1088/1126-6708/1999/11/021;%%
%127 citations counted in INSPIRE as of 11 Dec 2019

%\cite{Cadoni:1993rn}
\bibitem{Cadoni:1993rn}
M.~Cadoni and S.~Mignemi,
``Classical and semiclassical properties of extremal black holes with dilaton and modulus fields,''
Nucl.\ Phys.\ B {\bf 427}, 669 (1994)
doi:10.1016/0550-3213(94)90644-0
[hep-th/9312171].
%%CITATION = doi:10.1016/0550-3213(94)90644-0;%%
%28 citations counted in INSPIRE as of 29 Nov 2019

%\cite{JT}
\bibitem{JT}
R.~Jackiw and C.~Teitelboim,
 in: Quantum Theory of Gravity, S. Christensen ed. (Adam Hilger, Bristol, 1984).


%\cite{Garfinkle:1990qj}
\bibitem{Garfinkle:1990qj}
D.~Garfinkle, G.~T.~Horowitz and A.~Strominger,``Charged black holes in string theory,''
Phys.\ Rev.\ D {\bf 43}, 3140 (1991)
Erratum: [Phys.\ Rev.\ D {\bf 45}, 3888 (1992)].
doi:10.1103/PhysRevD.43.3140, 10.1103/PhysRevD.45.3888
%%CITATION = doi:10.1103/PhysRevD.43.3140, 10.1103/PhysRevD.45.3888;%%
%1033 citations counted in INSPIRE as of 29 Nov 2019

 %\cite{Giddings:1992kn}
\bibitem{Giddings:1992kn}
S.~B.~Giddings and A.~Strominger,
``Dynamics of extremal black holes,''
Phys.\ Rev.\ D {\bf 46}, 627 (1992)
doi:10.1103/PhysRevD.46.627
[hep-th/9202004].
%%CITATION = doi:10.1103/PhysRevD.46.627;%%
%84 citations counted in INSPIRE as of 29 Nov 2019


 %\cite{Grumiller:2001ea}\bibitem{Grumiller:2001ea}
D.~Grumiller,
``Quantum dilaton gravity in two-dimensions with matter,''
gr-qc/0105078.
%%CITATION = GR-QC/0105078;%%
%33 citations counted in INSPIRE as of 25 Nov 2019


Vacuum States for AdS 2 Black Holes

The AdS/CFT Correspondence in Two Dimensions

NON-SINGULAR FOUR-DIMENSIONAL BLACK HOLES AND THE JACKIW-TEITELBOIM THEORY

Geometrodynamical Formulation of Two-Dimensional
Dilaton Gravity

ASYMPTOTIC SYMMETRIES OF AdS 2 AND
CONFORMAL GROUP IN d=1

AdS 2 Gravity as Conformally Invariant Mechanical
System

Open strings, 2D gravity and AdS/CFT correspondence

The Holographic Entanglement
Entropy of Schwarzschild Black Holes


Entanglement entropy of two-dimensional anti-de Sitter black holes

Near Extremal Black Hole Entropy
as Entanglement Entropy via AdS 2 /CFT 1

هل الثقالة كمومية ام كلاسيكية?

فريمان دايزون Freeman Dyson آخر العمالقة الذين صنعوا النظرية الكمومية الحديثة عمره 96 سنة و مازال يصنع و يريد ان يصنع ثورات اخرى فى الفيزياء النظرية.
آخر شطحاته الفيزيائية العميقة هو تحديه (ومنذ العام 2001) لمسلمة فيزيائية-رياضية من اكثر المسلمات رسوخا وهى لرسوخها لا يتكلم عنها اى احد فهى عقيدة فيزيائية من نوع عقائد "ايمان او فيزياء العجائز".
فالمسلمة ان الجميع يسلم تسليما مطلقا لا تفكير معه ان كل الواقع المادى بدون استثناء هو كمومى اى انه يجب ان يخضع لقوانين الميكانيك الكمومى.
اذن القوى الكونية الاربعة (الكهرومغناطيسية و النووية الصغرى و النووية الكبرى) هى كلها قوى كمومية بالاساس و هذا تم البرهان عليه نظريا و تجريبيا بما لا يدع اى مجال للشك. لكن ايضا قوة الجذب الثقالى (وهى القوى الرابعة و اقدم القوى اكتشافا) يجب ان تكون هى الاخرى قوة كمومية.
هذه هى المسلمة. المسلمة ان كل شيء مادى و من بين ذلك قوة الجذب الثقالى يجب ان يخضع لقوانين الميكانيك الكمومى.
لكن الصعوبات الهائلة التى يجدها الفيزيائيون فى عملية تكميم القوة الثقالية هى صعوبات غير مسبوقة فى تاريخ الفيزياء النظرية و العجز عن ايجاد هذه القوة الكمومية للثقالة هو عجز شامل رغم كثرة العباقرة و الاذكياء الذين حاولوا و يحاولون و منذ حوالى 100 سنة و ايضا فان الاقتراحات و البرامج المطروحة لحل هذا المشكل (ايجاد ما يسمى "الثقالة الكمومية" او "نظرية كل شيء" و هو الاسم الشعبى) لا تعد و لا تحصى لكنها كلها فاشلة و فشلت فى تقديم اى حل مقبول (ومن هذه الاقتراحات نظرية الاوتار string theory و الثقالة الكمومية الحلقية loop quantum gravity و الهندسة غير التبديلية noncommutative geometry و النماذج المصفوفية matrix models و التثليت الديناميكى dynamical triangulation و المجموعات السببية causal sets و غيرها كثير جدا لا يمكن ان يحصيها المقام).
اذن السؤال الذى بدأ يطرحه الفيزيائيون هل هذا العجز و الفشل راجع الى عدم توفر الادوات و كذا الفهم المناسبين لحل هذه المعضلة ام انه راجع الى كون المعضلة غير قابلة للحل اصلا لان الثقالة كلاسيكية اصلا ليس لها اى علاقة بالكمومى?
(انظر مثلا ستيافن كارليب Stephan Carlip وهو رجل ذو نظرة خاصة به فى هذا المجال الذى راجع هذه النقطة بشكل مقتضب فى مقال بعنوان (هل الثقالة الكمومية ضرورية?
انظر هنا
https://arxiv.org/abs/0803.3456)
الجواب الذى يعطيه دايزون ابن ال 96 سنة هو لا.
الثقالة الكمومية ليست ضرورية.
لان قوة الجذب الثقالى هى بالاساس قوة كلاسيكية عكس باقى القوى.
و على هذا الرأى فان الكون تحكمه ثنائية duality (وهذا امر تقمته الفيزياء و الفلسفة معا).
فمن جهة هناك الميكانيك الكمومى الذى هو النظرية المضبوطة لكل شيء فى الكون باستثناء قوة الثقالة و هناك النسبية العامة الكلاسيكية التى تحكم بشكل مضبوط قوة الجذب الثقالى.
وهذا رأى وجيه جدا فى رايى.
وقد ذهب روجر بنروز Roger Penrose فى تفسيره للميكانيك الكمومى (وايضا المجرى لايوس ديوسى Lajos Diosi) الى شيء من هذا القبيبل بالقول ان عملية انهيار دالة الموجة collapse of the wave function هى عملية ديناميكية (ولهذا يسمى هذا التفسير بتفسير الانهيار الموضوعى objective collapse) تتسبب فيه بالضبط بنية الفضاء-زمن الكلاسيكية المستمرة الصلبة. و هذا قد يعنى ضمنيا ان الفضاء-زمن لا يمكن ان يدخل او يكون متراكبا خطيا linearly superposed مثلما يحدث للمادة اى انه لا يمكن للفضاء-زمن ان يكون منحنيا بشكل معين و منحنيا بشكل آخر فى نفس الوقت فى تركيب خطى.
لكن السؤال يبقى فعلا. هل الثقالة كلاسيكية ام كمومية من الناحية التجريبية المحضة. فالفيزياء علم مادى و تبقى طريقته الاساسية فى الحسم هو الحس و ليس العقل. اذن هل يمكن القيام بالتجربة.
الجواب كما تبين مؤخرا نعم يمكن القيام بالتجربة و هى تجربة معقدة جدا من الناحية التكنولوجية لان قوة الثقالة ضعيفة جدا على مستوى المسافات النى نعيش فيها (قوة الثقالة تصبح هائلة و تصبح هى المهيمنة فقط على مستوى الكون ككل و مستوى الثقوب السوداء). و هذا الضعف يتسبب فى صعوبات مستحيلة تقريبا فى قياس و رصد اثار هذه القوة فى المختبرات.
لكن الجواب يبقى نعم و التجربة فعلا اصبحت ممكنة و قابلة للاجراء خلال السنوات العشر القادمة ان شاء الله.
انظروا مقال الكوانطا quanta magazine (اروع مجلة علمية فى التاريخ كله) من أجل وصف الاقتراحات و ذكر المراجع هنا
https://www.quantamagazine.org/physicists-find-a-way-to-se…/
نلخص خطوات هذه التجربة كما يلى.
اولا نعتبر كرتان صغيرتان من الماس وهما كرتان كلاسيكيتان اى تتصرفان بشكل كلاسيكى.
نحول كل كرة ماس الى جسيم كمومى عن طريق غرس ذرة نيتروجين فى قلب الكرة مكان احدى ذرات الكربون بجوار شغور vacancy فى البنية الشبكية lattice structure للماس. هذا الشغور عبارة عن عيب نقطى point defect فى شبكة الماس (تذكروا ان الماس هو بلور من الناحية الذرية عبارة عن شبكة من ذرات الكربون) اى لا توجد ذرة كربون اين كان يجب ان تكون ذرة كربون.
اذن ندخل على كرة الماس عيب يسمى عيب نقطى عبارة عن جملة نيتروجين-شغور nitrogen-vacancy system كما فى الصورة الثانية.
ثانيا نُشع على كل كرة ماس (و جملة النيتروجين-شغور التى فى مركزها) نبضة ميكروية microwave pulse و هذا من اجل اثارتها to excite. اذن الالكترون الذى يدور حول جملة النيتروجين-شغور اما انه يمتص هذا الاشعاع النبضة او لا يمتص لانه جسيم كمومى. وهكذا تصبح كرة الماس كمومية لانها تصبح فى حالة تركيب خطى لسبينين (مفرد سبين spin و هو عزم اللف). فاذا امتص الاكترون النبضة فان جملة النيتروجين-شغور تصبح مثارة و عندها يصبح السبين لجملة كرة الماس علوى spin-up و اذا لم يمتص الالكترون النبضة فان جملة النيتروجين-شغور تبقى فى الحالى الاساسية و يبقى عندها سبين جملة كرة الماس سفلى spin-down.
ثالثا نضع كرتا الماس فى حقل مغناطيسى. اذن الحقل المغناطيسى سيجعل كرة الماس اذا كانت حالتها هى السبين العلوى تنحرف فى حركتها الى اليمين اما اذا كانت حالتها هى السبين السلفى فهى ستنحرف فى حركتها الى اليسار.
اذن تصبح كل كرة ماس فى حالة تركيب خطى لمسارين مختلفين.
رابعا اذن الكرتان ستتجاذبان ثقاليا. هنا تدخل طبيعة الثقالة هل هى كلاسيكية حقيقة ام هى كمومية مثل باقى القوى الاساسية للطبيعة.
اذن كرة الماس الاولى (الحمراء مثلا) هى فى حالة تداخل خطى لمسارين و كرة الماس الثانية (الزرقاء مثلا) هى ايضا فى حالة تداخل خطى لمسارين. اذن قوة قوة الجذب الثقالى بين الكرتين ستتعلق بمكان كل كرة فى تركيبها الخطى. اذن هناك اربعة امكانيات.
-الحمراء انحرفت الى اليمين و الزرقاء انحرفت الى اليمين. فهذه قوة ما.
-الحمراء انحرفت الى اليمين و الرزقاء انحرفت الى اليسار فهذه قوة مختلفة.
-الحمراء انحرفت الى اليسار و الزرقاء انحرفت الى اليمين فهذه قوة ثالثة مختلفة.
-الحمراء انحرفت الى اليسار و الزرقاء انحرفت الى اليسار فهذه قوة رابعة مختلفة.
اذن يصبح سبين او عزم لف جملة النيتروجين-شغور الموجودة فى مركز الكرة الحمراء مرتبطا correlated ب سبين او عزم لف جملة النيتروجين-شغور الموجودة فى مركز الكرة الزرقاء.
خامسا اذا كانت قوة الثقالة كمومية فعلا فان حالة الجملة الكلية (كرة الماس الحمراء+ كرة الماس الزرقاء) متشابكة تشابكا كموميا quantum entanglement وهى ظاهرة كمومية مخصوصة جدا. بعبارة اخرى تصبح الكرتان فعلا غير مستقلتان تماما بل تشكلان معا جملة واحدة توصف بحالة واحدة.
اما اذا كانت قوة الثقالة كلاسيكية فعلا فان انهيار دالة الموجة سيقع و هذا يعنى ان كرة الماس الحمراء اما ان تكون هناك او هنا و كرة الماس الزرقاء ستكون اما هنا او هناك و يقع التجاذب الثقالى بينهما على حسب ما وُجد فعلا فى الواقع.
اذن اما ان نحصل على حالة تشابك كمومى (حالة الثقالة الكمومية) او نحصل على توزيع احصائى عادى (حالة الثقالة الكلاسيكة).
سادسا بعد سقوط الكرتان جنبا الى جنب لوقت معين يتم ادخالهما الى حقل مغناطيسى ثانى عكسى من اجل دمج المسارات مجددا التى تم تفريقها فى الخطوة الثالثة.
سابعا آخر خطوة هى ما يسمى بروتوكول "شاهد التشابك" entanglement witness الذى يسمح لنا بقياس او رصد حالة الكرتان و التأكد من ماهيتها (هل هى تشابك كمومى اذن هى ثقالة كمومية ام هى توزيع احصائى اذن هى نسبية عامة كلاسيكة).
كل هذه الخطوات فى الصورة الثالثة.



Matrix models and noncommutative gravity

Yang-Mills matrix models

Yang-Mills matrix models play a crucial role in noncommutative gravity and emergent geometry. As an example we will consider noncommutative ${\bf AdS}^2_{\theta}$ which can be obtained as the classical background solution of the following $D=3$  matrix model
\begin{eqnarray}
S[D]=Tr(-\frac{1}{4}[D_a,D_b][D^a,D^b]+\frac{2i}{3}\kappa f_{abc}D^aD^bD^c).\label{YM}
\end{eqnarray}
The ambient metric is $\eta=(-1,+1,+1)$, $D_a=(D_a)^{\dagger}$ are three matrices in ${\rm Mat}(\infty,\mathbb{C})$ and $f_{abc}$ are the structure constants of $SO(1,2)$. Hence this model is invariant under $SO(1,2)$ rotations as well as under gauge transformations $X_a\longrightarrow UX_aU^{\dagger}$ and under  translations $X_a\longrightarrow X_a+c$.

The variation of the action and the equation of motion are given by
\begin{eqnarray}
\delta S=-Tr\delta D^a[D^b,F_{ab}]\equiv 0\Rightarrow F_{ab}=[D_a,D_b]-i\kappa f_{abc}D^c\equiv 0.\label{eom}
\end{eqnarray}
A solution of these equations of motion is given by
\begin{eqnarray}
D^a=\kappa J^a\equiv \hat{X}^a.\label{ads2}
\end{eqnarray}
The $J^a$ are the generators of the Lie group $SO(1,2)$ in the irreducible representation given by the discrete series $D_j^{\pm}$ which are labeledby an integer $j\gt 1$. The $\hat{X}^a$ are thus precisely the coordinate operators on noncommutative ${\bf AdS}^2_{\theta}$ and as a consequence we have
\begin{eqnarray}
D^aD_a=\hat{X}^a\hat{X}_a=\kappa^2J^aJ_a=-R^2.\label{casimir}
\end{eqnarray}
In other words, the radius $R$ of  noncommutative ${\bf AdS}^2_{\theta}$, the integer $j$ labeling the discrete series $D_j^{\pm}$ and the coupling constant $\kappa$ of the corresponding Yang-Mills matrix model (\ref{YM}) are related by the condition

\begin{eqnarray}
R^2=\kappa^2j(j-1).
\end{eqnarray}
Therefore, the commutative limit $\kappa\longrightarrow 0$ corresponds to the large representation limit  $j\longrightarrow \infty$. The geometric commutative limit can be thought of as the semi-classical limit.

In noncommutative gravity the fundamental degrees of freedom of the theory are given by the hermitian  matrices $D^a$ and not by the metric $g_{\mu\nu}$ which can only emerge in the semi-classical/commutative limit $\kappa\longrightarrow 0$ (or equivalently $j\longrightarrow \infty$) as outlined in \cite{Steinacker:2008ri,Steinacker:2010rh}.

Furthermore, the noncommutativity tensor $\theta^{ab}$ (or equivalently the Poisson structure  $\theta^{\mu\nu}$ of the underlying symplectic manifold ${\bf AdS}^2$) is generically a function of the matrices $D^a$ (or equivalently of the local coordinates $x^{\mu}$ on ${\bf AdS}^2$) and plays also a more fundamental role than the emergent metric $g_{\mu\nu}$. This tensor is given explicitly by 
\begin{eqnarray}
[D^a,D^b]=i\kappa\theta^{ab}(D).\label{commutator}
\end{eqnarray}
Clearly, in the classical (classical with respect to the matrix model) configurations $D^a\equiv \hat{X}^a$ we must have $\theta^{ab}(D)\equiv f^{abc}\hat{X}_c$.



The matrix coordinates $D_a=\hat{X}^a$ behave in the commutative limit as $D_a \sim X^a$ which are the embedding coordinates of ${\bf AdS}^2$. These coordinates can always be decomposed into tangential and normal coordinates on ${\bf AdS}^2$. This can be seen  by considering for example the neighborhood of the "north pole", viz $X^3\equiv\phi\simeq R$, $X^{1}\equiv x^1 \lt\lt R$ and $X^2\equiv x^2\lt\lt R$ where $x^{1}$ and $x^{2}$ are local coordinates on ${\bf AdS}^2$. The commutator (\ref{commutator}) around the "north pole" becomes then $[\hat{x}^{\mu},\hat{x}^{\nu}]=i\kappa \theta^{\mu\nu}$ where $\theta^{\mu\nu}=Rf^{\mu\nu 3}$.

We decompose then the matrices $D^a\equiv \hat{X}^a$ into tangential and normal components as
\begin{eqnarray}
\hat{X}^a=(\hat{x}^{\mu},\hat{\phi}).
\end{eqnarray}
From the requirement (\ref{casimir}) we can see that $\phi$ is a function of $\hat{x}^{\mu}$, $\mu=1,2$, i.e.

\begin{eqnarray}
\hat{\phi}=\hat{\phi}(\hat{x}).
\end{eqnarray}
Hence, the commutator (\ref{commutator}) becomes
\begin{eqnarray}
[\hat{x}^{\mu},\hat{x}^{\nu}]=i\kappa\theta^{\mu\nu}(\hat{x})~,~\theta^{\mu\nu}\equiv f^{\mu\nu3}\hat{\phi}(\hat{x}).
\end{eqnarray}
The quantized derivations (parallel and normal) on noncommutative ${\bf AdS}^2_{\theta}$ and their commutative counterparts  on  ${\bf AdS}^2$ are then given by
\begin{eqnarray}
\hat{e}^a(F)=-i[D^a,F]\longrightarrow e^a(F)=\kappa\theta^{\mu\nu}\partial_{\mu}x^a\partial_bF.
\end{eqnarray}
Next, we introduce the covariant form of the action (\ref{action}) by
\begin{eqnarray}
S[D,\hat{\Phi}]=\frac{2\pi R \kappa}{2}Tr\bigg(-\frac{1}{R^2\kappa^2}[D^a,\hat{\Phi}][D_a,\hat{\Phi}]+m^2\hat{\Phi}^2\bigg).\label{actioncov}
 \end{eqnarray}
We can now compute in the configurations $D_a=\hat{X}^a$ the kinetic term

  \begin{eqnarray}
    -\eta_{ab}[D^{a},\hat{\Phi}][D^{b},\hat{\Phi}]&=&\eta_{ab}\hat{e}^{a}(\hat{\Phi})\hat{e}^{b}(\hat{\Phi})\nonumber\\
    &\sim &\kappa^{2}\theta^{\mu\mu^{\prime}}\theta^{\nu\nu^{\prime}}{g}_{\mu\nu}{\partial}_{\mu^{\prime}}\Phi{\partial}_{\nu^{\prime}}\Phi\nonumber\\
    &\sim &{G}^{\mu^{\prime}\nu^{\prime}}{\partial}_{\mu^{\prime}}\Phi{\partial}_{\nu^{\prime}}\Phi.
  \end{eqnarray}
The quantity $G^{\mu\nu}$ is the induced metric which couples to matter fields and which is given explicitly by
   \begin{eqnarray}
        {G}^{\mu^{\prime}\nu^{\prime}} &=&\kappa^{2}\theta^{\mu\mu^{\prime}}\theta^{\nu\nu^{\prime}}{g}_{\mu\nu}.
   \end{eqnarray}
Whereas $g_{\mu\nu}$ is  the embedding metric (the metric on ${\bf AdS}^2$ viewed as a Poisson manifold) given explicitly by
  \begin{eqnarray}
    {g}_{\mu\nu}&=& \eta_{ab}{\partial}_{\mu}x^{a}{\partial}_{\nu}x^{b}.
  \end{eqnarray}
The kinetic action is then given by
\begin{eqnarray}
    -Tr [D_{a},\hat{\Phi}][D^{b},\hat{\Phi}]
    &\sim &\frac{1}{2\pi}\int d^2x\rho(x){G}^{\mu^{\prime}\nu^{\prime}}{\partial}_{\mu^{\prime}}\Phi{\partial}_{\nu^{\prime}}\Phi.\label{kaction}
  \end{eqnarray}
We introduced in this last equation a scalar density $\rho$, which  defines on the quantized  Poisson manifold ${\bf AdS}^2_{\theta}$ a local non-commutativity scale, by the relation
\begin{eqnarray}
 \rho=\frac{1}{\sqrt{{\rm det}{\kappa \theta^{\mu\nu}}}}.\label{sd1}
  \end{eqnarray}
The kinetic action (\ref{kaction}) does not have the canonical covariant form which can be reinstated by a rescaling of the metric as follows

\begin{eqnarray}
  \tilde{G}^{ab}=\exp(-\sigma)G^{ab}.\label{sd2}
\end{eqnarray}
And imposing the condition
 \begin{eqnarray}
\rho G^{ab}=\sqrt{{\rm det}\tilde{G}_{ab}}\tilde{G}^{ab}\Rightarrow \rho=\sqrt{{\rm det}G_{ab}}.\label{sd3}
\end{eqnarray}
By using equations  (\ref{sd1}) and (\ref{sd3}) we can show that the scalar density $\rho$ can also be written in the form $\rho=\sqrt{{\rm det}g_{ab}}$. Hence, we must have
\begin{eqnarray}
G_{ab}\equiv g_{ab}.
\end{eqnarray}
And by substituting in (\ref{sd2}) we obtain
\begin{eqnarray}
\tilde{G}^{ab}\equiv e^{-\sigma} g^{ab}.
\end{eqnarray}We get immediately in the semi-classical limit $\kappa\longrightarrow 0$ the kinetic action
\begin{eqnarray}
    -Tr [D_{a},\hat{\Phi}][D^{b},\hat{\Phi}]
    &\sim &\frac{1}{2\pi}\int d^2x\sqrt{{\rm det}G_{\mu\nu}}{G}^{\mu^{\prime}\nu^{\prime}}{\partial}_{\mu^{\prime}}\Phi{\partial}_{\nu^{\prime}}\Phi\nonumber\\
&\sim & \frac{1}{2\pi}\int d^2x\sqrt{{\rm det}\tilde{G}_{\mu\nu}}{\tilde{G}}^{\mu^{\prime}\nu^{\prime}}{\partial}_{\mu^{\prime}}\Phi{\partial}_{\nu^{\prime}}\Phi.
  \end{eqnarray}
The conformal factor $e^{-\sigma}$ remains therefore undetermined since in two dimensions Weyl transformations of the metric $G^{\mu\nu}\longrightarrow e^{-\alpha}G^{\mu\nu}$ are  in fact symmetries of the action \cite{Jurman:2013ota}.

By going through the same steps we can now show that the Yang-Mills term (quartic term) of the matrix model (\ref{YM}) reduces, in the semi-classical/commutative limit $\kappa\longrightarrow 0$ (or equivalently $j\longrightarrow \infty$), not to the Einstein equations but to the cosmological term \cite{Jurman:2013ota}. A matrix form of the Einstein equations can also be written down but this is not necessary within the formalism of noncommutative gravity since the condensation of the geometry of ${\bf AdS}^2_{\theta}$ is in fact driven by the Myers-Chern-Simons term (cubic term)  of  (\ref{YM}) \cite{Myers:1999ps}.

Indeed, the ${\bf AdS}^2_{\theta}$ solution (\ref{ads2}) of the equation of motion (\ref{eom}) is not unique and this solution can be made more stable by adding a potential term the action (\ref{YM}) which implements explicitly the constraint (\ref{casimir}) such as the term \cite{CastroVillarreal:2004vh}
\begin{eqnarray}
V[D]=M^2Tr(D^aD_a+R^2)^2. \label{potential}
\end{eqnarray}
The action (\ref{YM})+(\ref{potential}) will then admit for large and positive values of $M^2$ a unique solution given by the ${\bf AdS}^2_{\theta}$ background (\ref{ads2}) which satisfies the constraint (\ref{casimir}) by construction. The expansion of the scalar action (\ref{actioncov})  around the AdS solution becomes more reliable since this background in the limit $M^2\longrightarrow \infty$ is  completely stable. Therefore, the action (\ref{YM})+(\ref{potential}) acts effectively within noncommutative gravity as an Einstein-Hilbert action.

References



  %\cite{Steinacker:2008ri}
\bibitem{Steinacker:2008ri}
  H.~Steinacker,
  ``Emergent Gravity and Noncommutative Branes from Yang-Mills Matrix Models,''
  Nucl.\ Phys.\ B {\bf 810}, 1 (2009)
  %doi:10.1016/j.nuclphysb.2008.10.014
  [arXiv:0806.2032 [hep-th]].
  %%CITATION = doi:10.1016/j.nuclphysb.2008.10.014;%%
  %74 citations counted in INSPIRE as of 22 Mar 2019


  %\cite{Steinacker:2010rh}
\bibitem{Steinacker:2010rh}
  H.~Steinacker,
  ``Emergent Geometry and Gravity from Matrix Models: an Introduction,''
  Class.\ Quant.\ Grav.\  {\bf 27}, 133001 (2010)
%  doi:10.1088/0264-9381/27/13/133001
  [arXiv:1003.4134 [hep-th]].
  %%CITATION = doi:10.1088/0264-9381/27/13/133001;%%
  %138 citations counted in INSPIRE as of 27 Mar 2019

%\cite{Myers:1999ps}
\bibitem{Myers:1999ps}
R.~C.~Myers,
``Dielectric branes,''
JHEP {\bf 9912}, 022 (1999)
doi:10.1088/1126-6708/1999/12/022
[hep-th/9910053].
%%CITATION = doi:10.1088/1126-6708/1999/12/022;%%
 %1285 citations counted in INSPIRE as of 16 Nov 2019

%\cite{CastroVillarreal:2004vh}\bibitem{CastroVillarreal:2004vh}
P.~Castro-Villarreal, R.~Delgadillo-Blando and B.~Ydri,
``A Gauge-invariant UV-IR mixing and the corresponding phase transition for U(1) fields on the fuzzy sphere,''
Nucl.\ Phys.\ B {\bf 704}, 111 (2005)
doi:10.1016/j.nuclphysb.2004.10.032
[hep-th/0405201].
  %%CITATION = doi:10.1016/j.nuclphysb.2004.10.032;%%
  %54 citations counted in INSPIRE as of 16 Nov 2019